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Abstract
We present rStar-Math to demonstrate that small language models (SLMs) can rival
or even surpass the math reasoning capability of OpenAI o1, without distillation
from superior models. rStar-Math achieves this by exercising “deep thinking”
through Monte Carlo Tree Search (MCTS), where a math policy SLM performs
test-time search guided by an SLM-based process reward model. rStar-Math
introduces three innovations to tackle the challenges in training the two SLMs:
(1) a novel code-augmented CoT data sythesis method, which performs extensive
MCTS rollouts to generate step-by-step verified reasoning trajectories used to train
the policy SLM; (2) a novel process reward model training method that avoids naïve
step-level score annotation, yielding a more effective process preference model
(PPM); (3) a self-evolution recipe in which the policy SLM and PPM are built
from scratch and iteratively evolved to improve reasoning capabilities. Through
4 rounds of self-evolution with millions of synthesized solutions for 747k math
problems, rStar-Math boosts SLMs’ math reasoning to state-of-the-art levels. On
the MATH benchmark, it improves Qwen2.5-Math-7B from 58.8% to 90.0% and
Phi3-mini-3.8B from 41.4% to 86.4%, surpassing o1-preview by +4.5% and +0.9%.
On the USA Math Olympiad (AIME), rStar-Math solves an average of 53.3% (8/15)
of problems, ranking among the top 20% the brightest high school math students.
Code and data will be available at https://github.com/microsoft/rStar.

Task
(pass@1 Acc)

rStar-Math
(Qwen-7B)

rStar-Math
(Qwen-1.5B)

rStar-Math
(Phi3-mini)

OpenAI
o1-preview

OpenAI
o1-mini

QWQ
32B-preview GPT-4o DeepSeek-V3

MATH 90.0 88.6 86.4 85.5 90.0 90.6 76.6 90.2
AIME 2024 53.3 46.7 43.3 44.6 56.7 50.0 9.3 39.2

Olympiad Bench 65.6 64.6 60.3 - 65.3 61.2 43.3 55.4
College Math 60.5 59.3 59.1 - 57.8 55.8 48.5 58.9
Omni-Math 50.5 48.5 46.0 52.5 60.5 49.6 30.5 35.9

Table 1: rStar-Math enables frontier math reasoning in SLMs via deep thinking over 64 trajectories.

1 Introduction
Recent studies have demonstrated that large language models (LLMs) are capable of tackling
mathematical problems [Team, 2024a, Yang et al., 2024, OpenAI, 2024, Liu et al., 2024]. However,
the conventional approach of having LLMs generate complete solutions in a single inference – akin to
System 1 thinking [Daniel, 2011] – often yields fast but error-prone results [Valmeekam et al., 2023,
OpenAI, 2023]. In response, test-time compute scaling [Snell et al., 2024, Qi et al., 2024] suggests a
paradigm shift toward a System 2-style thinking, which emulates human reasoning through a slower
and deeper thought process. In this paradigm, an LLM serves as a policy model to generate multiple
math reasoning steps, which are then evaluated by another LLM acting as a reward model [OpenAI,
2024]. The steps and solutions deemed more likely to be correct are selected. The process repeats
iteratively and ultimately derives the final answer.

∗Equal contribution.
⋄Project leader; correspondence to lzhani@microsoft.com
§Xinyu Guan and Youran Sun did this work during the internship at MSRA. Xinyu Guan

(2001gxy@gmail.com) is with Peking University, Youran Sun is with Tsinghua University.

ar
X

iv
:2

50
1.

04
51

9v
1 

 [
cs

.C
L

] 
 8

 J
an

 2
02

5

https://github.com/microsoft/rStar


(a) step-by-step verified reasoning trajectory

Step 1 Step 2

MCTS-driven deep thinking

Answer step

 (correct)

One step 

Apply Verifiers

(PPM/ python) 

SLM

-0.5

0.8

0.6

0.7

0.9

PPM

question …

final step

..

full solutions

.. ....
(b) Construction of per-step preference pairs based on Q-values

SLM-r1

PPM-augmented

MCTSPPM-r2 PPM-r3 PPM-r4

SLM-r2 SLM-r3 SLM-r4Terminal-guided

MCTS
Terminal-guided

MCTS

PPM-augmented

MCTS

Round 1 Round 2 Round 3 Round 4
..

(c) 4 rounds of self-evolution

Q-value 

filtering

-0.70.5

1 1-1 -1
Answer step

 (wrong)

Figure 1: The overview of rStar-Math.

In the test-time compute paradigm, the key is to train a powerful policy model that generates promising
solution steps and a reliable reward model that accurately evaluates them, both of which depend
on high-quality training data. Unfortunately, it is well-known that off-the-shelf high-quality math
reasoning data is scarce, and synthesizing high-quality math data faces fundamental challenges. For
the policy model, it is challenging to distinguish erroneous reasoning steps from the correct ones,
complicating the elimination of low-quality data. It is worth noting that in math reasoning, a correct
final answer does not ensure the correctness of the entire reasoning trace [Lanham et al., 2023].
Incorrect intermediate steps significantly decrease data quality. As for the reward model, process
reward modeling (PRM) shows a great potential by providing fine-grained feedback on intermediate
steps [Lightman et al., 2023]. However, the training data is even scarcer in this regard: accurate
step-by-step feedback requires intense human labeling efforts and is impractical to scale, while those
automatic annotation attempts show limited gains due to noisy reward scores [Luo et al., 2024, Wang
et al., 2024c, Chen et al., 2024]. Due to the above challenges, existing distill-based data synthesis
approaches to training policy models, e.g., scaling up GPT4-distilled CoT data [Tang et al., 2024,
Huang et al., 2024], have shown diminishing returns and cannot exceed the capability of their teacher
model; meanwhile, as of today, training reliable PRMs for math reasoning remains an open question.

In this work, we introduce rStar-Math, a self-evolvable System 2-style reasoning approach that
achieves the state-of-the-art math reasoning, rivaling and sometimes even surpassing OpenAI o1 on
challenging math competition benchmarks with a model size as small as 7 billion. Unlike solutions
relying on superior LLMs for data synthesis, rStar-Math leverages smaller language models (SLMs)
with Monte Carlo Tree Search (MCTS) to establish a self-evolutionary process, iteratively generating
higher-quality training data. To achieve self-evolution, rStar-Math introduces three key innovations.

First, a novel code-augmented CoT data synthesis method, which performs extensive MCTS rollouts to
generate step-by-step verified reasoning trajectories with self-annotated MCTS Q-values. Specifically,
math problem-solving is decomposed into multi-step generation within MCTS. At each step, the
SLM serving as the policy model samples candidate nodes, each generating a one-step CoT and the
corresponding Python code. To verify the generation quality, only nodes with successful Python
code execution are retained, thus mitigating errors in intermediate steps. Moreover, extensive MCTS
rollouts automatically assign a Q-value to each intermediate step based on its contribution: steps
contributing to more trajectories that lead to the correct answer are given higher Q-values and
considered higher quality. This ensures that the reasoning trajectories generated by SLMs consist of
correct, high-quality intermediate steps.

Second, a novel method that trains an SLM acting as a process preference model, i.e., a PPM to
implement the desired PRM, that reliably predicts a reward label for each math reasoning step. The
PPM leverages the fact that, although Q-values are still not precise enough to score each reasoning
step despite using extensive MCTS rollouts, the Q-values can reliably distinguish positive (correct)
steps from negative (irrelevant/incorrect) ones. Thus the training method constructs preference pairs
for each step based on Q-values and uses a pairwise ranking loss [Ouyang et al., 2022] to optimize
PPM’s score prediction for each reasoning step, achieving reliable labeling. This approach avoids
conventional methods that directly use Q-values as reward labels [Luo et al., 2024, Chen et al., 2024],
which are inherently noisy and imprecise in stepwise reward assignment.

Finally, a four-round self-evolution recipe that progressively builds both a frontier policy model
and PPM from scratch. We begin by curating a dataset of 747k math word problems from publicly
available sources. In each round, we use the latest policy model and PPM to perform MCTS,
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generating increasingly high-quality training data using the above two methods to train a stronger
policy model and PPM for next round. Each round achieves progressive refinement: (1) a stronger
policy SLM, (2) a more reliable PPM, (3) generating better reasoning trajectories via PPM-augmented
MCTS, and (4) improving training data coverage to tackle more challenging and even competition-
level math problems.

Extensive experiments across four SLMs (1.5B-7B) and seven math reasoning tasks demonstrate
the effectiveness of rStar-Math. Remarkably, rStar-Math improves all four SLMs, matching or even
surpassing OpenAI o1 on challenging math benchmarks. On MATH benchmark, with 8 search
trajectories, rStar-Math boosts Qwen2.5-Math-7B from 58.8% to 89.4% and Qwen2.5-Math-1.5B
from 51.2% to 87.8%. With 64 trajectories, the scores rise to 90% and 88.4%, outperforming
o1-preview by 4.5% and 2.6% and matching o1-mini’s 90%. On the Olympiad-level AIME 2024,
rStar-Math solves on average 53.3% (8/15) of the problems, exceeding o1-preview by 8.7% and all
other open-sourced LLMs. We further conduct comprehensive experiments to verify the superiority
of step-by-step verified reasoning trajectories over state-of-the-art data synthesis baselines, as well as
the PPM’s effectiveness compared to outcome reward models and Q value-based PRMs. Finally, we
present key findings from rStar-Math deep thinking, including the intrinsic self-reflection capability
and PPM’s preference for theorem-applications intermediate steps.

2 Related Works

Math Data Synthesis. Advancements in LLM math reasoning have largely relied on curating
high-quality CoT data, with most leading approaches being GPT-distilled, using frontier models like
GPT-4 for synthesis [Wang et al., 2024b, Gou et al., 2023, Luo et al., 2023]. Notable works include
NuminaMath [Jia LI and Polu, 2024a] and MetaMath [Yu et al., 2023b]. While effective, this limits
reasoning to the capabilities of the teacher LLM. Hard problems that the teacher LLM cannot solve
are excluded in the training set. Even solvable problems may contain error-prone intermediate steps,
which are hard to detect. Although rejection sampling methods [Yuan et al., 2023, Brown et al., 2024]
can improve data quality, they do not guarantee correct intermediate steps. As a result, scaling up CoT
data has diminishing returns, with gains nearing saturation—e.g., OpenMathInstruct-2 [Toshniwal
et al., 2024] only sees a 3.9% boost on MATH despite an 8× increase in dataset size.

Scaling Test-time Compute has introduced new scaling laws, allowing LLMs to improve perfor-
mance across by generating multiple samples and using reward models for best-solution selection
[Snell et al., 2024, Wu et al., 2024, Brown et al., 2024]. Various test-time search methods have been
proposed [Kang et al., 2024, Wang et al., 2024a], including random sampling [Wang et al., 2023]
and tree-search methods [Yao et al., 2024, Hao et al., 2023, Zhang et al., 2024b, Qi et al., 2024] like
MCTS. However, open-source methods for scaling test-time computation have shown limited gains in
math reasoning, often due to policy LLM or reward model limitations. rStar-Math addresses this by
iteratively evolving the policy LLM and reward model, achieving System 2 mathematical reasoning
performance comparable to OpenAI o1 [OpenAI, 2024].

Reward Models are crucial for effective System 2 reasoning but are challenging to obtain. Recent
works include LLM-as-a-Judge for verification [Zheng et al., 2023, Qi et al., 2024] and specialized
reward models like Outcome Reward Model [Yang et al., 2024, Yu et al., 2023a] and Process Reward
Model (PRM) [Lightman et al., 2024]. While PRMs offer promising dense, step-level reward signals
for complex reasoning [Luo et al., 2024, Wang et al., 2024c], collecting step-level annotations
remains an obstacle. While Kang et al. [2024], Wang et al. [2024a] rely on costly human-annotated
datasets like PRM800k [Lightman et al., 2024], recent approaches [Wang et al., 2024c, Luo et al.,
2024] explore automated annotation via Monte Carlo Sampling or MCTS. However, they struggle to
generate precise reward scores, which limits performance gains. rStar-Math introduces a novel process
preference reward (PPM) that eliminates the need for accurate step-level reward score annotation.

3 Methodology

3.1 Design Choices

MCTS for Effective System 2 Reasoning. We aim to train a math policy SLM and a process reward
model (PRM), and integrating both within Monte Carlo Tree Search (MCTS) for System 2 deep
thinking. MCTS is chosen for two key reasons. First, it breaks down complex math problems into
simpler single-step generation tasks, reducing the difficulty for the policy SLM compared to other
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System 2 methods like Best-of-N [Brown et al., 2024] or self-consistency [Wang et al., 2023], which
require generating full solutions in one inference. Second, the step-by-step generation in MCTS
naturally yields step-level training data for both models. Standard MCTS rollout automatically assign
Q-value to each step based on its contribution to the final correct answer, obviating the need for
human-generated step-level annotations for process reward model training.

Ideally, advanced LLMs such as GPT-4 could be integrated within MCTS to generate training
data. However, this approach faces two key challenges. First, even these powerful models struggle
to consistently solve difficult problems, such as Olympiad-level mathematics. Consequently, the
resulting training data would primarily consist of simpler solvable problems, limiting its diversity and
quality. Second, annotating per-step Q-values demands extensive MCTS rollouts; insufficient tree
exploration can lead to spurious Q-value assignments, such as overestimating suboptimal steps. Given
that each rollout involves multiple single-step generations and these models are computationally
expensive, increasing rollouts significantly raises inference costs.

Overview. To this end, we explore using two 7B SLMs (a policy SLM and a PRM) to generate higher-
quality training data, with their smaller size allowing for extensive MCTS rollouts on accessible
hardware (e.g., 4×40GB A100 GPUs). However, self-generating data presents greater challenges for
SLMs, due to their weaker capabilities. SLMs frequently fail to generate correct solutions, and even
when the final answer is correct, the intermediate steps are often flawed or of poor quality. Moreover,
SLMs solve fewer challenging problems compared to advanced models like GPT-4.

This section introduces our methodology, as illustrated in Fig. 1. To mitigate errors and low-quality
intermediate steps, we introduce a code-augmented CoT synthetic method, which performs extensive
MCTS rollouts to generate step-by-step verified reasoning trajectories, annotated with Q-values. To
further improve SLM performance on challenging problems, we introduce a four-round self-evolution
recipe. In each round, both the policy SLM and the reward model are updated to stronger versions,
progressively tackling more difficult problems and generating higher-quality training data. Finally, we
present a novel process reward model training approach that eliminates the need for precise per-step
reward annotations, yielding the more effective process preference model (PPM).

3.2 Step-by-Step Verified Reasoning Trajectory

We start by introducing our method for generating step-by-step verified reasoning trajectories with
per-step Q-value annotations. Given a problem x and a policy model M , we run the standard MCTS
to incrementally construct a search tree for step-by-step solution exploration. As shown in Fig. 1(a),
the root node represents question x, while child nodes correspond to intermediate steps s generated
by M . A root-to-leaf path ending at terminal node sd forms a trajectory t = x⊕ s1 ⊕ s2 ⊕ ...⊕ sd,
with each step si assigned a Q-value Q(si). From the search tree T , we extract solution trajectories
T = {t1, t2, ..., tn}(n ≥ 1). Our goal is to select high-quality trajectories from T to construct the
training set. For this purpose, we introduce code-augmented CoT synthesis method to filter out
low-quality generations and perform extensive rollouts to improve the reliability of Q-value accuracy.

Code-augmented CoT Generation. Prior MCTS approaches primarily generate natural language
(NL) CoTs [Qi et al., 2024, Zhang et al., 2024a]. However, LLMs often suffer from hallucination,
producing incorrect or irrelevant steps yet still arrive at the correct answer by chance [Lanham et al.,
2023]. These flawed steps are challenging to detect and eliminate. To address this, we propose a
novel code execution augmented CoT. As shown in Fig. 2, the policy model generates a one-step NL
CoT alongside its corresponding Python code, where the NL CoT is embedded as a Python comment.
Only generations with successfully executed Python code are retained as valid candidates.

# Step 1: Calculate the total distance walked south

   total_south = 1/2 +1/2

   # Step 2: Calculate the total distance walked east

   total_east = 3/4

   # Step 3: Use the Pythagorean theorem to find the direct distance from the starting point

   import math

   direct_distance = math.sqrt(total_south**2 + total_east**2)

   # Step 4: Round the direct distance to the nearest hundredth

   direct_distance_rounded = round(direct_distance, 2

   From the result, we can see that the direct distance from the starting point is \boxed{1.25} miles

Question: Bill walks $\frac{1}{2}$ mile south, then $\frac{3}{4}$ mile east, and finally $\frac{1}{2}$ mile south. How many miles is he, in a direct line, 

from his starting point?  Express your answer as a decimal to the nearest hundredth.

NL CoT as Python Comment
# Step 1: Calculate the total distance walked south

   total_south = 1/2 +1/2

# Step 1: Calculate the total distance walked south

   total_south = 1/2 +1/2

   # Step 2: Calculate the total distance walked east

   total_east = 3/4

Python code execution for step 1:

Python code execution for step 2:

…

Figure 2: An example of Code-augmented CoT.
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Specifically, starting from the initial root node x, we perform multiple MCTS iterations through
selection, expansion, rollout, and back-propagation. At step i, we collect the latest reasoning trajectory
x ⊕ s1 ⊕ s2 ⊕ ... ⊕ si−1 as the current state. Based on this state, we prompt (see Appendix A.3)
the policy model to generate n candidates si,0, ..., si,n−1 for step i. Python code execution is then
employed to filter valid nodes. As shown in Fig. 2, each generation si,j is concatenated with the code
from all previous steps, forming s1 ⊕ s2 ⊕ ...⊕ si−1 ⊕ si,j . Candidates that execute successfully
are retained as valid nodes and scored by the PPM, which assigns a Q-value q(si). Then, we use the
well-known Upper Confidence bounds for Trees (UCT) [Kocsis and Szepesvári, 2006] to select the
best node among the n candidates. This selection process is mathematically represented as:

UCT(s) = Q(s) + c

√
lnNparent(s)

N(s)
; where Q(s) =

q(s)

N(s)
(1)

where N(s) denotes the number of visits to node s, and Nparent(s) is the visit count of s’s parent node.
The predicted reward q(s) is provided by the PPM and will be updated through back-propagation. c
is a constant that balances exploitation and exploration.

Extensive Rollouts for Q-value Annotation. Accurate Q-value Q(s) annotation in Eq. 1 is crucial
for guiding MCTS node selection towards correct problem-solving paths and identifying high-quality
steps within trajectories. To improve Q-value reliability, we draw inspiration from Go players, who
retrospectively evaluate the reward of each move based on game outcomes. Although initial estimates
may be imprecise, repeated gameplay refines these evaluations over time. Similarly, in each rollout,
we update the Q-value of each step based on its contribution to achieving the correct final answer.
After extensive MCTS rollouts, steps consistently leading to correct answers achieve higher Q-values,
occasional successes yield moderate Q-values, and consistently incorrect steps receive low Q-values.
Specifically, we introduce two self-annotation methods to obtain these step-level Q-values. Fig. 1(c)
shows the detailed setting in the four rounds of self-evolution.

Terminal-guided annotation. During the first two rounds, when the PPM is unavailable or insufficiently
accurate, we use terminal-guided annotation. Formally, let q(si)k denote the q value for step si after
back-propagation in the kth rollout. Following AlphaGo [Silver et al., 2017] and rStar [Qi et al.,
2024], we score each intermediate node based on its contribution to the final correct answer:

q(si)
k = q(si)

k−1 + q(sd)
k; (2)

where the initial q value q(si)0 = 0 in the first rollout. If this step frequently leads to a correct answer,
its q value will increase; otherwise, it decreases. Terminal nodes are scored as q(sd) = 1 for correct
answers and q(sd) = −1 otherwise, as shown in Fig. 1.

PRM-augmented annotation. Starting from the third round, we use PPM to score each step for more
effective generation. Compared to terminal-guided annotation, which requires multiple rollouts for
a meaningful q value, PPM directly predicts a non-zero initial q value. PPM-augmented MCTS
also helps the policy model to generate higher-quality steps, guiding solutions towards correct paths.
Formally, for step si, PPM predicts an initial q(si)0 value based on the partial trajectory:

q(si)
0 = PPM(x⊕ s1 ⊕ s2 ⊕ ...⊕ si−1 ⊕ si) (3)

This q value will be updated based on terminal node’s q(sd) value through MCTS back-propagation
in Eq. 2. For terminal node sd, we do not use PRM for scoring during training data generation.
Instead, we assign a more accurate score based on ground truth labels as terminal-guided rewarding.

3.3 Process Preference Model

Process reward models, which provide granular step-level reward signals, is highly desirable for
solving challenging math problems. However, obtaining high-quality step-level training data remains
an open challenge. Existing methods rely on human annotations [Lightman et al., 2023] or MCTS-
generated scores [Zhang et al., 2024a, Chen et al., 2024] to assign a score for each step. These
scores then serve as training targets, with methods such as MSE loss [Chen et al., 2024] or pointwise
loss [Wang et al., 2024c, Luo et al., 2024, Zhang et al., 2024a] used to minimize the difference
between predicted and labeled scores. As a result, the precision of these annotated step-level reward
scores directly determines the effectiveness of the resulting process reward model.

Unfortunately, precise per-step scoring remains a unsolved challenge. Although our extensive MCTS
rollouts improve the reliability of Q-values, precisely evaluating fine-grained step quality presents a
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major obstacle. For instance, among a set of correct steps, it is difficult to rank them as best, second-
best, or average and then assign precise scores. Similarly, among incorrect steps, differentiating
the worst from moderately poor steps poses analogous challenges. Even expert human annotation
struggles with consistency, particularly at scale, leading to inherent noise in training labels.

We introduce a novel training method that trains a process preference model (PPM) by constructing
step-level positive-negative preference pairs. As shown in Fig. 1(b), instead of using Q-values as
direct reward labels, we use them to select steps from MCTS tree for preference pair construction.
For each step, we select two candidates with the highest Q-values as positive steps and two with the
lowest as negative steps. Critically, the selected positive steps must lead to a correct final answer,
while negative steps must lead to incorrect answers. For intermediate steps (except the final answer
step), the positive and negative pairs share the same preceding steps. For the final answer step, where
identical reasoning trajectories rarely yield different final answers, we relax this restriction. We select
two correct trajectories with the highest average Q-values as positive examples and two incorrect
trajectories with the lowest average Q-values as negative examples. Following [Ouyang et al., 2022],
we define our loss function using the standard Bradley-Terry model with a pairwise ranking loss:

Lppm(θ) = − 1

2× 2
E(x,ypos

i ,yneg
i ∈D)[log(σ(rθ(x, y

pos
i )− rθ(x, y

neg
i )))] (4)

when i is not final answer step, yposi = s1 ⊕ ...⊕ si−1 ⊕ sposi ; ynegi = s1 ⊕ ...⊕ si−1 ⊕ snegi (5)
Here, rθ(x, yi) denotes the output of the PPM, where x is the problem and y is the trajectory from
the first step to the ith step.

3.4 Self-Evolved Deep Thinking

3.4.1 Training with Step-by-Step Verified Reasoning Trajectory

Math Problems Collection. We collect a large dataset of 747k math word problems with final
answer ground-truth labels, primarily from NuminaMath [Jia LI and Polu, 2024a] and MetaMath [Yu
et al., 2023b]. Notably, only competition-level problems (e.g., Olympiads and AIME/AMC) from
NuminaMath are included, as we observe that grade-school-level problems do not significantly
improve LLM complex math reasoning. To augment the limited competition-level problems, we
follow [Li et al., 2024] and use GPT-4 to synthesize new problems based on the seed problems in 7.5k
MATH train set and 3.6k AMC-AIME training split. However, GPT-4 often generated unsolvable
problems or incorrect solutions for challenging seed problems. To filter these, we prompt GPT-4 to
generate 10 solutions per problem, retaining only those with at least 3 consistent solutions.

Reasoning Trajectories Collection. Instead of using the original solutions in the 747k math dataset,
we conduct extensive MCTS rollouts (Sec. 3.2) to generate higher-quality step-by-step verified
reasoning trajectories. In each self-evolution round, we perform 16 rollouts per math problem, which
leads to 16 reasoning trajectories. Problems are then categories by difficulty based on the correct ratio
of the generated trajectories: easy (all solutions are correct), medium (a mix of correct and incorrect
solutions) and hard (all solutions are incorrect). For hard problems with no correct trajectories, an
additional MCTS with 16 rollouts is performed. After that, all step-by-step trajectories and their
annotated Q-values are collected and filtered to train the policy SLM and process preference model.

Supervised Fine-tuning the Policy SLM. Through extensive experiments, we find that selecting
high-quality reasoning trajectories is the key for fine-tuning a frontier math LLM. While methods
such as GPT-distillation and Best-of-N can include low-quality or erroneous intermediate steps, a
more effective approach ensures that every step in the trajectory is of high quality. To achieve this,
we use per-step Q-values to select optimal trajectories from MCTS rollouts. Specifically, for each
math problem, we select the top-2 trajectories with the highest average Q-values among those leading
to correct answers as SFT training data.

Training PPM. The PPM is initialized from the fine-tuned policy model, with its next-token prediction
head replaced by a scalar-value head consisting of a linear layer and a tanh function to constrain
outputs to the range [-1, 1]. We filter out math problems where all solution trajectories are fully
correct or incorrect. For problems with mixed outcomes, we select two positive and two negative
examples for each step based on Q-values, which are used as preference pairs for training data.

3.4.2 Recipe for Self-Evolution

Due to the weaker capabilities of SLMs, we perform four rounds of MCTS deep thinking to progres-
sively generate higher-quality data and expand the training set with more challenging math problems.
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Table 2: Percentage of the 747k math problems correctly solved in each round. Only problems have
correct solutions are included in the training set. The first round uses DeepSeek-Coder-Instruct as the
policy LLM, while later rounds use our fine-tuned 7B policy SLM.

# models in MCTS GSM-level MATH-level Olympiad-level All

Round 1 DeepSeek-Coder-V2-Instruct 96.61% 67.36% 20.99% 60.17%
Round 2 policy SLM-r1 97.88% 67.40% 56.04% 66.60%
Round 3 policy SLM-r2, PPM-r2 98.15% 88.69% 62.16% 77.86%
Round 4 policy SLM-r3, PPM-r3 98.15% 94.53% 80.58% 90.25%

Table 3: Pass@1 accuracy of the resulting policy SLM in each round, showing continuous improve-
ment until surpassing the bootstrap model.

Round# MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023

DeepSeek-Coder-V2-Instruct
(bootstrap model) 75.3 13.3 57.5 37.6 46.2 94.9 64.7

Base (Qwen2.5-Math-7B) 58.8 0.0 22.5 21.8 41.6 91.6 51.7
policy SLM-r1 69.6 3.3 30.0 34.7 44.5 88.4 57.4
policy SLM-r2 73.6 10.0 35.0 39.0 45.7 89.1 59.7
policy SLM-r3 75.8 16.7 45.0 44.1 49.6 89.3 62.8
policy SLM-r4 78.4 26.7 47.5 47.1 52.5 89.7 65.7

Each round uses MCTS to generate step-by-step verified reasoning trajectories, which are then used
to train the new policy SLM and PPM. The new models are then applied in next round to generate
higher-quality training data. Fig. 1(c) and Table 2 detail the models used for data generation in each
round, along with the identifiers of the trained policy model and PPM. Next, we outline the details
and specific improvements targeted in each round.

Round 1: Bootstrapping an initial strong policy SLM-r1. To enable SLMs to self-generate
reasonably good training data, we perform a bootstrap round to fine-tune an initial strong policy
model, denoted as SLM-r1. As shown in Table 2, we run MCTS with DeepSeek-Coder-V2-Instruct
(236B) to collect the SFT data. With no available reward model in this round, we use terminal-guided
annotation for Q-values and limit MCTS to 8 rollouts for efficiency. For correct solutions, the top-2
trajectories with the highest average Q-values are selected as SFT data. We also train PPM-r1, but the
limited rollouts yields unreliable Q-values, affecting the effectiveness of PPM-r1 ( Table 4).

Round 2: Training a reliable PPM-r2. In this round, with the policy model updated to the 7B
SLM-r1, we conduct extensive MCTS rollouts for more reliable Q-value annotation and train the
first reliable reward model, PPM-r2. Specifically, we perform 16 MCTS rollouts per problem. The
resulting step-by-step verified reasoning trajectories show significant improvements in both quality
and Q-value precision. As shown in Table 4, PPM-r2 is notably more effective than in the bootstrap
round. Moreover, the policy SLM-r2 also continues to improve as expected (Table 3).

Round 3: PPM-augmented MCTS to significantly improve data quality. With the reliable
PPM-r2, we perform PPM-augmented MCTS in this round to generate data, leading to significantly
higher-quality trajectories that cover more math and Olympiad-level problems in the training set
(Table 2). The generated reasoning trajectories and self-annotated Q-values are then used to train the
new policy SLM-r3 and PPM-r3, both of which show significant improvements.

Round 4: Solving challenging math problems. After the third round, while grade school and
MATH problems achieve high success rates, only 62.16% of Olympiad-level problems are included in
the training set. This is NOT solely due to weak reasoning abilities in our SLMs, as many Olympiad
problems remain unsolved by GPT-4 or o1. To improve coverage, we adopt a straightforward strategy.
For unsolved problems after 16 MCTS rollouts, we perform an additional 64 rollouts, and if needed,
increase to 128. We also conduct multiple MCTS tree expansions with different random seeds. This
boosts the success rate of Olympiad-level problems to 80.58%.

After four rounds of self-evolution, 90.25% of the 747k math problems are successfully covered into
the training set, as shown in Table 2. Among the remaining unsolved problems, a significant portion
consists of synthetic questions. We manually review a random sample of 20 problems and find that 19
are incorrectly labeled with wrong answers. Based on this, we conclude that the remaining unsolved
problems are of low quality and thus terminate the self-evolution at round 4.
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Table 4: The quality of PPM consistently improves across rounds. The policy model has been fixed
with policy SLM-r1 for a fair comparison.

Round# MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023

PPM-r1 75.2 10.0 57.5 35.7 45.4 90.9 60.3
PPM-r2 84.1 26.7 75.0 52.7 54.2 93.3 73.0
PPM-r3 85.2 33.3 77.5 59.5 55.6 93.9 76.6
PPM-r4 87.0 43.3 77.5 61.5 56.8 94.2 77.8

4 Evaluation

4.1 Setup

Evaluation Datasets. We evaluate rStar-Math on diverse mathematical benchmarks. In addition to
the widely-used GSM8K [Cobbe et al., 2021], we include challenging benchmarks from multiple
domains: (i) competition and Olympiad-level benchmarks, such as MATH-500 [Lightman et al.,
2023], AIME 2024 [AI-MO, 2024a], AMC 2023 [AI-MO, 2024b] and Olympiad Bench [He et al.,
2024]. Specifically, AIME is the exams designed to challenge the brightest high school math students
in American, with the 2024 dataset comprising 30 problems from AIME I and II exams; (ii) college-
level math problems from College Math [Tang et al., 2024] and (iii) out-of-domain math benchmark:
GaoKao (Chinese College Entrance Exam) En 2023 [Liao et al., 2024].

Base Models and Setup. rStar-Math is a general approach applicable to various LLMs. To show
its effectiveness and generalizability, we use SLMs of different sizes as the base policy models:
Qwen2.5-Math-1.5B [Qwen, 2024b], Phi3-mini-Instruct (3B) [Microsoft, 2024, Abdin et al., 2024],
Qwen2-Math-7B [Qwen, 2024a] and Qwen2.5-Math-7B [Qwen, 2024c]. Among these, Phi3-mini-
Instruct is a general-purpose SLM without specialization in math reasoning.

Due to limited GPU resources, we performed 4 rounds of self-evolution exclusively on Qwen2.5-
Math-7B, yielding 4 evolved policy SLMs (Table 3) and 4 PPMs (Table 4). For the other 3 policy
LLMs, we fine-tune them using step-by-step verified trajectories generated from Qwen2.5-Math-7B’s
4th round. The final PPM from this round is then used as the reward model for the 3 policy SLMs.

Baselines. rStar-Math is a System 2 method. We compare it against three strong baselines representing
both System 1 and System 2 approaches: (i) Frontier LLMs, including GPT-4o, the latest Claude,
OpenAI o1-preview and o1-mini. We measure their accuracy on AMC 2023, Olympiad Bench,
College Math, Gaokao and GSM8K, with accuracy numbers for other benchmarks are taken from
public technical reports [Team, 2024a]. (ii) Open-sourced superior reasoning models, including
DeepSeek-Coder-v2-Instruct, Mathstral [Team, 2024b], NuminaMath-72B [Jia LI and Polu, 2024a],
and LLaMA3.1 [Dubey et al., 2024], which represent the current mainstream System 1 approaches
for improving LLM math reasoning. (iii) Both System 1 and System 2 performance of the base models
trained from the original models teams, including Instruct versions (e.g., Qwen2.5-Math-7B-Instruct)
and Best-of-N (e.g., Qwen2.5-Math-72B-Instruct+Qwen2.5-Math-RM-72B). Notably, the reward
model used for the three Qwen base models is a 72B ORM, significantly larger than our 7B PPM.

Evaluation Metric. We report Pass@1 accuracy for all baselines. For System 2 baselines, we use
default evaluation settings, such as default thinking time for o1-mini and o1-preview. For Qwen
models with Best-of-N, we re-evaluate MATH-500, AIME/AMC accuracy; other benchmarks results
are from their technical reports. For a fair comparison, rStar-Math run MCTS to generate the
same number of solutions as Qwen. Specifically, for AIME/AMC, we generate 16 trajectories for
AIME/AMC and 8 for other benchmarks, using PPM to select the best solution. We also report
performance with increased test-time computation using 64 trajectories, denoted as rStar-Math64.

4.2 Main Results

Results on diverse challenging math benchmarks. Table 5 shows the results of rStar-Math with
comparing to state-of-the-art reasoning models. We highlight three key observations: (1) rStar-Math
significantly improves SLMs math reasoning capabilities, achieving performance comparable to
or surpassing OpenAI o1 with substantially smaller model size (1.5B-7B). For example, Qwen2.5-
Math-7B, originally at 58.8% accuracy on MATH, improved dramatically to 90.0% with rStar-Math,
outperforming o1-preview and Claude 3.5 Sonnet while matching o1-mini. On the College Math
benchmark, rStar-Math exceeds o1-mini by 2.7%. On AIME 2024, rStar-Math scored 53.3%, ranking
just below o1-mini, with the 7B model solving 8/15 problems in both AIME I and II, placing in
the top 20% of the brightest high school math students. Notably, 8 of the unsolved problems were
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Table 5: The results of rStar-Math and other frontier LLMs on the most challenging math benchmarks.
rStar-Math64 shows the Pass@1 accuracy achieved when sampling 64 trajectories.

Competition and College Level OOD

Model Method MATH AIME
2024

AMC
2023

Olympiad
Bench

College
Math GSM8K Gaokao

En 2023

Frontier LLMs
GPT-4o System 1 76.6 9.3 47.5 43.3 48.5 92.9 67.5
Claude3.5-Sonnet System 1 78.3 16.0 - - - 96.4 -
GPT-o1-preview - 85.5 44.6 90.0 - - - -
GPT-o1-mini - 90.0 56.7 95.0 65.3 57.8 94.8 78.4

Open-Sourced Reasoning LLMs
DeepSeek-Coder-V2-Instruct System 1 75.3 13.3 57.5 37.6 46.2 94.9 64.7
Mathstral-7B-v0.1 System 1 57.8 0.0 37.5 21.5 33.7 84.9 46.0
NuminaMath-72B-CoT System 1 64.0 3.3 70.0 32.6 39.7 90.8 58.4
LLaMA3.1-8B-Instruct System 1 51.4 6.7 25.0 15.4 33.8 76.6 38.4
LLaMA3.1-70B-Instruct System 1 65.4 23.3 50.0 27.7 42.5 94.1 54.0
Qwen2.5-Math-72B-Instruct System 1 85.6 30.0 70.0 49.0 49.5 95.9 71.9
Qwen2.5-Math-72B-Instruct+72B ORM System 2 85.8 36.7 72.5 54.5 50.6 96.4 76.9

General Base Model: Phi3-mini-Instruct (3.8B)
Phi3-mini-Instruct (base model) System 1 41.4 3.33 7.5 12.3 33.1 85.7 37.1
rStar-Math (3.8B SLM+7B PPM) System 2 85.4 40.0 77.5 59.3 58.0 94.5 77.1
rStar-Math64 (3.8B SLM+7B PPM) System 2 86.4 43.3 80.0 60.3 59.1 94.7 77.7

Math-Specialized Base Model: Qwen2.5-Math-1.5B
Qwen2.5-Math-1.5B (base model) System 1 51.2 0.0 22.5 16.7 38.4 74.6 46.5
Qwen2.5-Math-1.5B-Instruct System 1 60.0 10.0 60.0 38.1 47.7 84.8 65.5
Qwen2.5-Math-1.5B-Instruct+72B ORM System 2 83.4 20.0 72.5 47.3 50.2 94.1 73.0
rStar-Math (1.5B SLM+7B PPM) System 2 87.8 46.7 80.0 63.5 59.0 94.3 77.7
rStar-Math64 (1.5B SLM+7B PPM) System 2 88.6 46.7 85.0 64.6 59.3 94.8 79.5

Math-Specialized Base Model: Qwen2-Math-7B
Qwen2-Math-7B (base model) System 1 53.4 3.3 25.0 17.3 39.4 80.4 47.3
Qwen2-Math-7B-Instruct System 1 73.2 13.3 62.5 38.2 45.9 89.9 62.1
Qwen2-Math-7B-Instruct+72B ORM System 2 83.4 23.3 62.5 47.6 47.9 95.1 71.9
rStar-Math (7B SLM+7B PPM) System 2 88.2 43.3 80.0 63.1 58.4 94.6 78.2
rStar-Math64 (7B SLM+7B PPM) System 2 88.6 46.7 85.0 63.4 59.3 94.8 79.2

Math-Specialized Base Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B (base model) System 1 58.8 0.0 22.5 21.8 41.6 91.6 51.7
Qwen2.5-Math-7B-Instruct System 1 82.6 6.0 62.5 41.6 46.8 95.2 66.8
Qwen2.5-Math-7B-Instruct+72B ORM System 2 88.4 26.7 75.0 49.9 49.6 97.9 75.1
rStar-Math (7B SLM+7B PPM) System 2 89.4 50.0 87.5 65.3 59.0 95.0 80.5
rStar-Math64 (7B SLM+7B PPM) System 2 90.0 53.3 87.5 65.6 60.5 95.2 81.3

geometry-based, requiring visual understanding, a capability rStar-Mathcurrently does not support.
(2) Despite using smaller policy models (1.5B-7B) and reward models (7B), rStar-Math significantly
outperforms state-of-the-art System 2 baselines. Compared to Qwen Best-of-N baselines, which
use the same base models (Qwen2-Math-7B, Qwen2.5-Math-1.5B/7B) but a 10× larger reward
model (Qwen2.5-Math-RM-72B), rStar-Math consistently improves the reasoning accuracy of all
base models to state-of-the-art levels. Even against Best-of-N with a 10× larger Qwen2.5-Math-72B-
Instruct policy model, rStar-Math surpasses it on all benchmarks except GSM8K, using the same
number of sampled solutions. (3) Beyond well-known benchmarks like MATH, GSM8K, and AIME,
which may risk over-optimization, rStar-Math shows strong generalizability on other challenging
math benchmarks, including Olympiad Bench, College Math, and the Chinese College Entrance
Math Exam (Gaokao), setting new state-of-the-art scores. As discussed in Sec. 3.4, our training set is
primarily sourced from public datasets, with no specific optimizations for these benchmarks.

Scaling up test-time computation. rStar-Math uses MCTS to augment the policy model, searching
solutions guided by the PPM. By increasing test-time computation, it explores more trajectories,
potentially improving performance. In Fig. 3, we show the impact of test-time compute scaling
by comparing the accuracy of the official Qwen Best-of-N across different numbers of sampled
trajectories on four challenging math benchmarks. Sampling only one trajectory corresponds to the
policy LLM’s Pass@1 accuracy, indicating a fallback to System 1 reasoning. We highlight two key
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Figure 3: Reasoning performance under scaling up the test-time compute.

observations: (1) With only 4 trajectories, rStar-Math significantly outperforms Best-of-N baselines,
exceeding o1-preview and approaching o1-mini, demonstrating its effectiveness. (2) Scaling test-time
compute improves reasoning accuracy across all benchmarks, though with varying trends. On Math,
AIME, and Olympiad Bench, rStar-Math shows saturation or slow improvement at 64 trajectories,
while on College Math, performance continues to improve steadily.

4.3 Ablation Study and Analysis

We ablate the effectiveness of our three innovations. For System 2-style inference, Pass@1 accuracy
is measured with 16 trajectories for AIME and AMC, and 8 for other benchmarks.

Table 6: The continuously improved math reasoning capabilities through rStar-Math self-evolved
deep thinking. Starting from round 2, the 7B base model powered by rStar-Math surpasses GPT-4o.

Round# MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023

GPT-4o 76.6 9.3 47.5 43.3 48.5 92.9 67.5

Base 7B model 58.8 0.0 22.5 21.8 41.6 91.6 51.7
rStar-Math Round 1 75.2 10.0 57.5 35.7 45.4 90.9 60.3
rStar-Math Round 2 86.6 43.3 75.0 59.4 55.6 94.0 76.4
rStar-Math Round 3 87.0 46.7 80.0 61.6 56.5 94.2 77.1
rStar-Math Round 4 89.4 50.0 87.5 65.3 59.0 95.0 80.5

The effectiveness of self-evolution. The impressive results in Table 5 are achieved after 4 rounds of
rStar-Math self-evolved deep thinking. Table 6 shows the math reasoning performance in each round,
demonstrating a continuous improvement in accuracy. In round 1, the main improvement comes from
applying SFT to the base model. Round 2 brings a significant boost with the application of a stronger
PPM in MCTS, which unlocks the full potential of System 2 deep reasoning. Notably, starting from
round 2, rStar-Math outperforms GPT-4o. Rounds 3 and 4 show further improvements, driven by
stronger System 2 reasoning through better policy SLMs and PPMs.

The effectiveness of step-by-step verified reasoning trajectory. rStar-Math generates step-by-step
verified reasoning trajectories, which eliminate error intermediate steps and further expand training
set with more challenging problems. To evaluate its effectiveness, we use the data generated from
round 4 as SFT training data and compare it against three strong baselines: (i) GPT-distillation, which
includes open-sourced CoT solutions synthesized using GPT-4, such as MetaMath [Yu et al., 2023b],
NuminaMath-CoT [Jia LI and Polu, 2024b]; (ii) Random sampling from self-generation, which
use the same policy model (i.e., policy SLM-r3) to randomly generate trajectories; (iii) Rejection
sampling, where 32 trajectories are randomly sampled from the policy model, with high-quality
solutions ranked by our trained ORM (appendix A.1). For fairness, we select two correct trajectories
for each math problem in baseline (ii) and (iii). All SFT experiments use the same training recipe.

Table 7 shows the math reasoning accuracy of Qwen2.5-Math-7B fine-tuned on different datasets.
We highlight two observations: (i) Fine-tuning with our step-by-step verified trajectories signifi-
cantly outperforms all other baselines. This is primarily due to our PPM-augmented MCTS for
code-augmented CoT synthesis, which provides denser verification during math solution generation.
It proves more effective than both random sampling, which lacks verification, and rejection sampling,
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Table 7: Ablation study on the effectiveness of our step-by-step verified reasoning trajectories as the
SFT dataset. We report the SFT accuracy of Qwen2.5-Math-7B fine-tuned with different datasets.

Dataset MATH AIME AMC Olympiad Bench College Math GSM8K GaokaoEn 2023

GPT-4o - 76.6 9.3 47.5 43.3 48.5 92.9 67.5

GPT4-distillation
(Open-sourced)

MetaMath 55.2 3.33 32.5 19.1 39.2 85.1 43.6
NuminaMath-CoT 69.6 10.0 50.0 37.2 43.4 89.8 59.5

Self-generation
by policy SLM-r3

Random sample 72.4 10.0 45.0 41.0 48.0 87.5 57.1
Rejection sampling 73.4 13.3 47.5 44.7 50.8 89.3 61.7

Step-by-step verified (ours) 78.4 26.7 47.5 47.1 52.5 89.7 65.7

where ORM provides only sparse verification. (ii) Even randomly sampled code-augmented CoT
solutions from our SLM yields comparable or better performance than GPT-4 synthesized Numina-
Math and MetaMath datasets. This indicates that our policy SLMs, after rounds of self-evolution, can
generate high-quality math solutions. These results demonstrates the huge potential of our method to
self-generate higher-quality reasoning data without relying on advanced LLM distillation.

The effectiveness of PPM. We train both a strong ORM and Q-value score-based PRM (PQM) for
comparison. To ensure a fair evaluation, we use the highest-quality training data: the step-by-step
verified trajectories generated in round 4, with selected math problems matching those used for PPM
training. Similar to PPM, we use step-level Q-values as to select positive and negative trajectories
for each math problem. The ORM is trained using a pairwise ranking loss [Ouyang et al., 2022],
while the PQM follows [Chen et al., 2024, Zhang et al., 2024a] to use Q-values as reward labels and
optimize with MSE loss. Detailed training settings are provided in Appendix A.1.

Table 8: Ablation study on the reward model. Process reward models (PQM and PPM) outperform
ORM, with PPM pushing the frontier of math reasoning capabilities.

RM Inference MATH AIME AMC Olympiad Bench College Math GSM8K GaokaoEn

o1-mini - 90.0 56.7 95.0 65.3 55.6 94.8 78.6

ORM Best-of-N 82.6 26.7 65.0 55.1 55.5 92.3 72.5
PQM MCTS 88.2 46.7 85.0 62.9 57.6 94.6 79.5
PPM MCTS 89.4 50.0 87.5 65.3 59.0 95.0 80.5

Table 8 compares the performance of ORM, PQM, and PPM for System 2 reasoning using our final
round policy model. ORM provides reward signals only at the end of problem solving, so we use
the Best-of-N method, while PRM and PPM leverage MCTS-driven search. As shown in Table 8,
both PQM and PPM outperform ORM by providing denser step-level reward signals, leading to
higher accuracy on complex math reasoning tasks. However, PQM struggles on more challenging
benchmarks, such as MATH and Olympiad Bench, due to the inherent imprecision of Q-values. In
contrast, PPM constructs step-level preference data for training, enabling our 7B policy model to
achieve comparable or superior performance to o1-mini across all benchmarks.

5 Findings and Discussions

The emergence of intrinsic self-reflection capability. A key breakthrough in OpenAI o1 is its
intrinsic self-reflection capability. When the model makes an error, it recognizes the mistake and can
self-correct with a correct answer [Noam Brown and Lightman, 2024]. Yet it has consistently been
found to be largely ineffective in open-sourced LLMs. The community has actively explored various
approaches, including self-correction [Huang et al., 2023, Kumar et al., 2024], self-reflection [Renze
and Guven, 2024, Shinn et al., 2024], to explicitly train or prompt LLMs to develop such capability.

In our experiments, we unexpectedly observe that our MCTS-driven deep thinking exhibits self-
reflection during problem-solving. As shown in Fig. 4, the model initially formalizes an equation using
SymPy in the first three steps, which would lead to an incorrect answer (left branch). Interestingly,
in the fourth step (right branch), the policy model recognizes the low quality of its earlier steps and
refrains from continuing along the initial problem-solving path. Instead, it backtracks and resolves
the problem using a new, simpler approach, ultimately arriving at the correct answer. An additional
example of self-correction is provided in AppendixA.2. Notably, no self-reflection training data or
prompt was included, suggesting that advanced System 2 reasoning can foster intrinsic self-reflection.
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Question: Given positive integers $x$ and $y$ such that $2x^2y^3 + 4y^3 = 149 + 3x^2$, 

what is the value of $x + y$?

<code>

from sympy import symbols, Eq, solve

# Define the variables x and y

x, y = symbols('x y')

<end_of_step> PPM score: -0.08

# Define the equation

equation = Eq(2*x**2*y**3 + 4*y**3, 149 + 3*x**2)

<end_of_step> PPM score: -0.219 

# Solve the equation for y in terms of x

solution = solve(equation, y)

<end_of_step> PPM score: -0.348 

# Now print the final answer

print(solution)\n

<end_of_code>

<output>

[(3*x**2/(2*x**2 + 4) + 149/(2*x**2 + 4))**(1/3), -(3*x**2/(2*x**2 + 4) + 

149/(2*x**2 + 4))**(1/3)/2 - sqrt(3)*I*(3*x**2/(2*x**2 + 4) + 149/(2*x**2 + 

4))**(1/3)/2, -(3*x**2/(2*x**2 + 4) + 149/(2*x**2 + 4))**(1/3)/2 + 

sqrt(3)*I*(3*x**2/(2*x**2 + 4) + 149/(2*x**2 + 4))**(1/3)/2]

<end_of_output>

PPM score: -0.517

# Since we need positive integers, we need to find the 

values of x and y that satisfy the equation

# We will check for small integer values of x and y

for x_val in range(1, 10):

   for y_val in range(1, 10):

      if 2*x_val**2*y_val**3 + 4*y_val**3 == 149 + 3*x_val**2:

          print(f\"x = {x_val}, y = {y_val}\")

          print(f\"x + y = {x_val + y_val}\")

break

<end_of_step>

PPM score: 0.620 

# Now print the final answer

# The loop will find the first valid pair (x, y) and print x + y

<end_of_code>

<output>

x = 3, y = 2

x + y = 5

<end_of_output>
PPM score: 0.698

<answer>

From the result, we can see that the value of x + y is 

\\boxed{5}

<end_of_answer>
PPM score: 0.835

<answer>

The value of \\(x + y\\) is \\boxed{8}.

<end_of_answer> PPM score: -0.529 

Intrinsic self-reflection:

Thinking outside the box,

find an easier solution!
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Figure 4: An example of intrinsic self-reflection during rStar-Math deep thinking.

Figure 5: Pass@1 accuracy of policy models and their accuracy after applying System 2 reasoning
with various reward models, shows that reward models primarily determine the final performance.

PPM shapes the reasoning boundary in System 2 deep thinking. Both the policy and reward mod-
els are crucial for System 2 deep reasoning. Our experiments show that once the policy model attains
a reasonably strong capability level, (see Appendix A.1 ), the PPM becomes the key determinant of
the upper performance limit. Fig. 5 summarizes the accuracy of policy models of different sizes, as
well as the improvements achieved with reward models. Despite variations in Pass@1 accuracy due
to differences in training strategies, datasets, and model scales, the reward model proves to be the
dominant factor in System 2 reasoning. For instance, although the SFT accuracy of rStar-Math-7B is
lower than Qwen2.5-Math-72B-Instruct, pairing it with our 7B PPM allows rStar-Math to outperform
the 72B policy model with Qwen 72B ORM. Moreover, despite varying Pass@1 accuracy across our
three policy SLM sizes, the final reasoning accuracy converges after applying the PPM.

PPM spots theorem-application steps. When solving challenging math problems, identifying and
applying relevant theorems or key conclusions often form the cornerstone of successful problem-
solving [Xin et al., 2024]. In our experiments, we find that during rStar-Math problem-solving, our
PPM effectively identifies critical theorem-application intermediate steps within policy model’s deep
thinking process. These steps are predicted with high reward scores, guiding the policy model to
generate the correct solution. Appendix A.2 provides examples where the PPM successfully identifies
key theorems such as Fermat’s little theorem [Weisstein, a], Vieta’s formulas [Weisstein, b], the
AM-GM inequality [amg], the Pythagorean theorem [pyt], and the Shoelace Theorem [sho], etc.
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Generalization discussions. rStar-Math offers a general methodology for improving LLM reasoning
applicable to various domains. First, rStar-Math can generalize to more challenging math tasks,
such as theorem proving, though its current focus is on word problems due to dataset limitations.
Nonetheless, rStar-Math demonstrates the potential to prove mathematical statements. As shown in
Appendix A.2, it successfully proves an Olympiad-level problem involving Fermat’s Little Theorem,
providing a step-by-step correct proof through its deep reasoning process. Second, rStar-Mathcan
generalize to other domains, such as code and commonsense reasoning. Notably, synthesizing step-
by-step verified training trajectories for general reasoning requires a mechanism to provide feedback
on whether a given trajectory reaches the desired output at the end of MCTS rollout. For instance,
in code reasoning, this could involve designing extensive test cases; in general reasoning, feedback
could be obtained through human labeling or mutual verification with another LLM [Qi et al., 2024].

6 Conclusion

In this work, we present rStar-Math, a self-evolved System 2 deep thinking approach that significantly
boosts the math reasoning capabilities of small LLMs, achieving state-of-the-art OpenAI o1-level
performance. Our approach demonstrates that SLMs can self-generate high-quality training data
for frontier-level math reasoning. Extensive experiments across four different-sized SLMs and
challenging math benchmarks demonstrate the superiority of rStar-Math, with achieving leading
results while outperforming existing math reasoning LLMs and Best-of-N baselines. We also reveal
key findings, including the emergence of self-reflection and the effectiveness of the PPM in identifying
critical intermediate steps, such as theorem-application steps. Finally, rStar-Math can achieve further
improvements by collecting more challenging math problems, we leave this as future work.
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A Appendix

A.1 Additional Experiments and Details

Data Generation Details. As detailed in Sec. 3.4, each round starts by self-generating step-by-step
verified trajectories for 747k math word problems. The maximum tree depth d is set to 16, with 16
MCTS rollouts conducted per problem by default. At each step, we allow to explore 8 candidate
nodes, and the constant c in Eq. 1 is set to 2 to promote greater exploration. In the bootstrap round,
due to the large size of the initial policy model (236B), we used smaller parameters: 8 rollouts and
5 candidate nodes per step. To improve the accuracy of solving challenging problems in round 4,
we increase the number of candidate nodes to 16 and conduct 2 MCTS tree expansions per problem
using different random seeds. Detailed prompts are available in Appendix A.3.

Training Details. In each round, we collect step-by-step verified trajectories to fine-tune the policy
LLM and train the PPM. To reduce noise in synthetic math problems (e.g., incorrect ground-truth
answers labeled by GPT-4), we remove synthetic problems with trajectories achieving less than 50%
accuracy. Based on our extensive experiments, the policy LLM is fine-tuned from the initial base
model in each round, rather than training incrementally on the model from the previous round. All
policy SLMs are trained for 2 epochs with a sequence length of 4096 tokens and a batch size of 128.
We use AdamW optimizer with a linear learning rate scheduler, setting the initial learning rate to 7e-6
for Qwen models, and a cosine scheduler with an initial learning rate of 5e-6 for Phi3-mini-Instruct.
The PPM is trained for 1 epoch with a batch size of 512 and an initial learning rate of 7e-6.

Training the ORM and PQM. The Outcome Reward Model (ORM) and the Q-value-based Process
Reward Model (PQM) share the same model architecture and training parameters with our PPM. To
train the ORM, we collect trajectories from math problems containing both correct and incorrect
solutions. Specifically, the two trajectories with the highest average Q-values are selected as positive
examples, while the two with the lowest are chosen as negative examples. Following Qwen2.5-
Math [Yang et al., 2024], we adopt the pairwise ranking loss [Ouyang et al., 2022] to optimize the
ORM. To train the PQM, we follow Chen et al. [2024] to use step-level Q-values as reward labels. Let
x = x⊕ s1⊕ s2⊕ ...⊕ sd be the trajectory, with annotated Q-values Q = (Q(s1), Q(s1), ..., Q(sd))
and predicted Q-values Q′ = (Q′(s1), Q

′(s1), ..., Q
′(sd)) for each step. To stabilize PQM training,

we treat each trajectory as a single training sample and predict Q-values for all steps simultaneously,
rather than splitting it into individual per-step samples. Specifically, to predict the Q-value Q′(si) for
step si, PQM takes the trajectory from the question up to step si (i.e., x⊕ s1 ⊕ s2 ⊕ ...⊕ si) as input
and outputs a value between -1 and 1. We use a mean squared error (MSE) loss for PQM training:

Lprm(x) = ∥Q−Q′∥2 (6)

Self-evolution Inference Costs. In the initial bootstrap round, we use DeepSeek-Coder-v2-Instruct
(236B) as the policy model, using 10 nodes of 8×80GB H100 GPUs with 8 MCTS rollouts. This
required approximately two weeks to finish the data generation. For rounds 2–4, using our fine-tuned
7B SLM as the policy model, data generation was performed on 15 nodes of 4×40GB A100 GPUs,
with each round completed in three days. In the final round, to include more challenging problems,
we increased the number of MCTS rollouts to 64, extending the data generation time to one week.

Table 9: Inference costs of rStar-Math. We show the average number of generated tokens required to
generate a trajectory for a given question.

MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023

5453 15693 14544 7889 4503 3299 6375

Inference Setting. In our evaluation, we run multiple MCTS to generate candidate solution trajecto-
ries. For each problem, we generate 32 candidate nodes at each step and use the PPM to score each
node. Since the PPM effectively provides step-level quality evaluations, we limit MCTS to just 4
rollouts per step to update the Q-values. After completing MCTS, the trajectory with the highest
PPM score is selected as the final answer. Table 9 presents the average number of tokens generated to
produce a trajectory in MCTS.

Pass@N. Table 10 compares the math reasoning performance of our policy models with the instruct
versions developed by the original model team. Our policy models do not consistently outperform the

18



Table 10: Pass@1 (greedy) accuracy of our fine-tuned policy models for Phi3-mini, Qwen2.5-Math-
1.5B, Qwen2-Math-7B and Qwen2.5-Math-7B.

Model MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023

General Base Model: Phi3-mini-Instruct (3.8B)
Phi3-mini-Instruct 41.4 3.33 7.5 12.3 33.1 85.7 37.1
Our policy model 68.0 10.0 37.5 36.6 48.7 87.9 53.2

Math-Specialized Base Model: Qwen2.5-Math-1.5B
Qwen2.5-Math-1.5B 51.2 0.0 22.5 16.7 38.4 74.6 46.5

Qwen2.5-Math-1.5B-Instruct 60.0 10.0 60.0 38.1 47.7 84.8 65.5
Our policy model 74.8 13.3 47.5 42.5 50.1 83.1 58.7

Math-Specialized Base Model: Qwen2-Math-7B
Qwen2-Math-7B 53.4 3.3 25.0 17.3 39.4 80.4 47.3

Qwen2-Math-7B-Instruct 73.2 13.3 62.5 38.2 45.9 89.9 62.1
Our policy model 73.8 16.7 45.0 43.9 52.0 88.3 65.2

Math-Specialized Base Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B 58.8 0.0 22.5 21.8 41.6 91.6 51.7

Qwen2.5-Math-7B-Instruct 82.6 6.0 62.5 41.6 46.8 95.2 66.8
Our policy model 78.4 26.7 47.5 47.1 52.5 89.7 65.7

Figure 6: Pass@N accuracy with random sampling from different policy models. Compared to the
official Qwen instruct version, our policy model exhibits a stronger ability to sample correct solutions.

Figure 7: Pass@N accuracy with PPM-augmented MCTS. Under the same PPM guidance, the four
policy models of varying sizes demonstrate convergent capabilities in sampling correct solutions.
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instruct versions. For example, on the Qwen2.5-Math-7B base model, Qwen2.5-Math-7B-Instruct
achieves 4.2% higher accuracy on the MATH benchmark. However, in System 2 deep thinking
paradigm, the pass@1 accuracy alone does not fully reflect the reasoning capabilities for the policy
model. To provide a more comprehensive evaluation, Fig.6 and Fig.7 present the pass@N accuracy.
In this metric, the policy model generates N solutions under two settings: random sampling (Fig.6)
and PPM-augmented MCTS deep thinking (Fig.7). A problem is considered solved if one solution
is correct. As shown in Figure 6, our policy model achieves comparable Pass@64 accuracy with
Qwen2.5-Math-7B-Instruct on MATH and significantly outperforms it on other benchmarks. Figure 7
further compares the pass@N accuracy of our four policy models (different sizes) after MCTS deep
thinking under the same PPM guidance. We can observe that after generating 64 trajectories, the
pass@N accuracy of different policy models becomes comparable.

20



A.2 Examples of Reasoning Trajectories

Self-correction Example

Question: The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (x, y) and x > 7. What is the value
of x+ y

Our trajectory:
<code>
# Import necessary libraries
i m p o r t numpy as np
<end_of_step>

# Define the coordinates of the parallelogram
A = np . a r r a y ( [ 5 , 3 ] )
B = np . a r r a y ( [ 6 , 8 ] )
C = np . a r r a y ( [ 7 , 4 ] )
<end_of_step>

# Calculate the vector differences to find the missing coordinate D
# In a parallelogram, the vector difference between two adjacent sides is equal to the vector difference between
the other two adjacent sides
# We can use the formula: D = A + (C - B)
D = A + (C − B)
<end_of_step>

# Since the coordinates provided are (5, 3), (6, 8), (7, 4) and (x, y), we can infer that the vector
from B to C should be the same as the vector from A to the missing point (x, y)
# This means: (x - 5, y - 3) = (1, -4) because the vector from B to C is (7 - 6, 4 - 8) = (1, -4)
# Solve for x and y
x = 5 + 1
y = 3 + ( −4)
<end_of_step>

# Verify that the point (x, y) exists and satisfies the condition x > 7
# Since x = 6 is not greater than 7, we need to use the correct formula that maintains the parallelogram property
and x > 7
# Correcting the formula to find the other possible D [Self-correction!]
D = C + (B − A)
<end_of_step>

# Solve for x and y again
x = 7 + (6 − 5)
y = 4 + (8 − 3)
<end_of_step>

# Verify that the point (x, y) exists and satisfies the condition x > 7
# Since x = 8 is greater than 7, which satisfies the condition given, we can now find the sum of x and y
x _ p l us _ y = x + y
<end_of_step>

# Now print the final answer
p r i n t ( x _ p l u s _ y )
# This should print the value of x + y
<end_of_code>
<output>17<end_of_output>
<answer>The value of x + y is 17 <end_of_answer>
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Math statement proof using Fermat’s little theorem

Question: If ( pt+a ) is a perfect square for some value of ( t ), then ( a
p−1
2 - 1 ) is divisible by ( p ) (where ( p )

is a prime number).

Our trajectory for proving:
<code>
# Step 1: Define the variables
from sympy i m p o r t symbols , i s p r i m e , s q r t , mod_ inve r se
# Define the variables
p , t , a = symbols ( ' p t a ' ) \ \
<end_of_step>

# Step 2: Assume p*t + a is a perfect square
# This means there exists an integer k such that p*t + a = k2
# Rearrange to find a in terms of p, t, and k
# a = k2 - p*t
<end_of_step>

# Step 3: Use Fermat’s Little Theorem
# Fermat’s Little Theorem states that if p is a prime and a is an integer not divisible by p,
then a(p−1) ≡ 1 (mod p)
# We need to show that a((p−1)/2) - 1 is divisible by p
<end_of_step>

# Step 4: Substitute a = k2 - p*t into Fermat’s Little Theorem
# a((p−1)/2) ≡ (k2 - p*t)((p−1)/2) (mod p)
# Since p*t is divisible by p, (k2 - p*t)((p−1)/2) ≡ k(p−1) (mod p)
# By Fermat’s Little Theorem, k(p−1) ≡1 (mod p)
<end_of_step>

# Step 5: Therefore, a((p−1)/2) ≡ 1 (mod p)
# This implies a((p−1)/2) - 1 ≡ 0 (mod p)
# Hence, a((p−1)/2) - 1 is divisible by p
<end_of_step>

# Now print the final answer
print("The expression a((p−1)/2) - 1 is divisible by p.")
<end_of_code>
<output>
The expression a((p−1)/2) - 1 is divisible by p.
The statement is true.
<end_of_output>

22



Problem-solving with application of the Vieta’s formulas and the AM-GM inequality

Question: Let a be a positive real number such that all the roots of

x3 + ax2 + ax+ 1 = 0

are real. Find the smallest possible value of a.

Our trajectory for proving:
<code>
# Step 1: Define the polynomial equation
from sympy import symbols, solve, Eq

# Define the variable and the parameter
x, a = symbols(’x a’)
<end_of_step> [PPM Score: -0.46430]

# Step 2: Define the polynomial equation
polynomial = x**3 + a*x**2 + a*x + 1
<end_of_step> [PPM Score: 0.53937]

# Step 3: Use Vieta’s formulas to relate the coefficients to the roots
# Since the polynomial is monic (leading coefficient is 1), the sum of the roots (taken one at a time) is -a
# The sum of the products of the roots taken two at a time is a
# The product of the roots is -1
# Since all roots are real, we can denote them as r1, r2, r3
# From Vieta’s formulas:
# r1 + r2 + r3 = -a
# r1*r2 + r2*r3 + r3*r1 = a
# r1*r2*r3 = -1
<end_of_step> [PPM Score: 0.9989]

# Step 4: Use the AM-GM inequality to find the minimum value of a
# By AM-GM, (r1*r2 + r2*r3 + r3*r1) / 3 >= (r1*r2*r3)(2/3)
# Substituting the known values:
# a / 3 >= (-1)(2/3)
# a / 3 >= 1
# a >= 3
<end_of_step> [PPM Score: 0.9999]

# Step 5: Verify if a = 3 is achievable
# If a = 3, then r1 + r2 + r3 = -3 and r1*r2 + r2*r3 + r3*r1 = 3
# We need to check if there exist real roots that satisfy these conditions
# Consider the case where r1 = r2 = r3 = -1
# Then r1 + r2 + r3 = -3 and r1*r2 + r2*r3 + r3*r1 = 3, and r1*r2*r3 = -1
# Thus, a = 3 is achievable with real roots
<end_of_step> [PPM Score: 1.0]

# Step 6: Print the final answer
print(3)
<end_of_code>
<output>3<end_of_output>
<answer>The smallest possible value of a is 3 .
<end_of_answer>

23



Problem-solving with application the Shoelace Theorem

Question: In the diagram, D and E are the midpoints of AB and BC respectively. Determine the area of
quadrilateral DBEF . [asy]
size(180); defaultpen(linewidth(.7pt)+fontsize(10pt));
pair A, B, C, D, E, F;
A=(0,6);
B=(0,0);
C=(8,0);
D=(0,3);
E=(4,0);
F=(8/3,2);
draw(E–A–C–D);
draw((-1,0)–(10,0), EndArrow);
draw((0,-1)–(0,8), EndArrow);
label("A(0, 6)", A, W);
label("B(0, 0)", B, SW);
label("C(8, 0)", C, S);
label("D", D, W);
label("E", E, S);
label("F ", F, SW);
label("x", (10,0), dir(0));
label("y", (0,8), dir(90)); [/asy]

Our trajectory for proving:
<code>
# Step 1: Define the coordinates of points A, B, C, D, and E
A = ( 0 , 6 )
B = ( 0 , 0 )
C = ( 8 , 0 )
D = ( 0 , 3 ) # Midpo in t o f AB
E = ( 4 , 0 ) # Midpo in t o f BC
<end_of_step> [PPM Score: -0.76639]
# Step 2: Define the coordinates of point F using the section formula (known to be (8/3, 2))
F = ( 8 / 3 , 2 )
<end_of_step> [PPM Score: 0.8429]
# Step 3: Use the Shoelace Theorem to find the area of quadrilateral DBEF
# Shoelace Theorem formula: Area = 0.5 * |x1y2 + x2y3 + x3y4 + x4y1 - (y1x2 + y2x3 + y3x4 + y4x1)|
# Coordinates of D, B, E, F are (0, 3), (0, 0), (4, 0), (8/3, 2) respectively
x1 , y1 = D
x2 , y2 = B
x3 , y3 = E
x4 , y4 = F
a r e a = 0 . 5 * abs ( x1*y2 + x2*y3 + x3*y4 + x4*y1

− ( y1*x2 + y2*x3 + y3*x4 + y4*x1 ) )
<end_of_step> [PPM Score: 0.9972]
# Step 4: Print the area of quadrilateral DBEF
p r i n t ( a r e a )

<end_of_code>
<output>8.0<end_of_output>
<answer> 8 <end_of_answer>
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A.3 Prompt Examples

MCTS Prompt for DeepSeek-V2-Coder-Instruct (bootstrap round)

You are a powerful agent with broad math knowledge and great python programming skills. You need to use
python interpreter to do accurate calculation on math equations.

!!! Remember:
1. Use code solve the problem step by step. The solution should include three parts: <code>, <output>, and
<answer>.
2. All calculations should be done in python code. Provide concise reasoning and thinking in the comments of
the code.
3. The most related python packages include ‘math‘, ‘sympy‘, ‘scipy‘, and ‘numpy‘.
4. Please use the following template:

Question: the input question
<code>Construct the code step by step. Use <end_of_step> to indicate the end of each step. Ensure your code
can execute correctly(excluding <end_of_step>) and print the answer. Avoid undefined variables (NameError),
unimported packages, or formatting errors (SyntaxError, TypeError). In the last step of the code, print the final
answer and add a comment: Now print the final answer.<end_of_code>
<output>Execute the code in using the Python interpreter and display the printed results.<end_of_output>
<answer>The concise answer without verbose context, put your final answer’s numerical part (without unit,
only focus on the numerical part if it’s a choice question) in
boxed.<end_of_answer> Now! It’s your turn.
Question: {input}

The following are 2 demonstration examples:
Question: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how
many times must Terrell lift them in order to lift the same total weight?
<code>
# Step 1: Calculate the total weight lifted with two 20-pound weights
total_weight_20 = 2 * 20 * 12
<end_of_step>

# Step 2: Calculate the weight lifted per repetition with two 15-pound weights
weight_per_rep_15 = 2 * 15
<end_of_step>

# Step 3: Calculate the number of repetitions needed to lift the same total weight with two 15-pound weights
reps_needed = total_weight_20 / weight_per_rep_15
<end_of_step>

# Now print the final answer
print(reps_needed)
<end_of_code>
<output>16.0 <end_of_output> <answer>From the result, we can see that Terrell must lift the 15-pound
weights
boxed16 times to lift the same total weight.
<end_of_answer>,

Question: Find the value of x that satisfies
√
3x+5√
6x+5

=
√
5

3
. Express your answer as a common fraction.

<code>
from sympy import symbols, Eq, solve, sqrt

# Define the variable x
x = symbols(’x’)
<end_of_step>

# Define the equation
equation = Eq(sqrt(3*x + 5) / sqrt(6*x + 5), sqrt(5) / 3)
<end_of_step>

# Solve the equation for x
solution = solve(equation, x)
<end_of_step>

# Now print the final answer
print(solution)
<end_of_code>
<output>[20/3]

<end_of_output> <answer>From the result, we can see that the value of x is
20

3

<end_of_answer>
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MCTS Prompt for our policy SLM

MCTS prompt for next step generation:
<|user|>:
{input question}
<|assistant|>: Let’s think step by step and solve the problem with code. {trajectory of previous steps}

SFT Prompt Example:
<|user|>:
How many numbers can you get by multiplying two or more distinct members of the set
1, 2, 3, 5, 11 together?

<|assistant|>: Let’s think step by step and solve the problem with code.
<code>
# Step 1: Create the set of numbers
numbers = {1 , 2 , 3 , 5 , 11}
<end_of_step>

# Step 2: Define a function to generate all possible products of two or more distinct members of the
setfrom i t e r t o o l s i m p o r t c o m b i n a t i o n s
d e f g e n e r a t e _ p r o d u c t s ( numbers ) :

p r o d u c t s = s e t ( )
f o r r i n r a n g e ( 2 , l e n ( numbers ) + 1 ) :

# For c o m b i n a t i o n s o f 2 , 3 , 4 , and 5 e l e m e n t s
f o r combo i n c o m b i n a t i o n s ( numbers , r ) :

p r o d u c t = 1
f o r num i n combo :

p r o d u c t *= num
p r o d u c t s . add ( p r o d u c t )
r e t u r n p r o d u c t s

<end_of_step>

# Step 3: Calculate the products
u n i q u e _ p r o d u c t s = g e n e r a t e _ p r o d u c t s ( numbers )

<end_of_step>

# Step 4: Calculate the number of unique products
num_un ique_produc t s = l e n ( u n i q u e _ p r o d u c t s )
<end_of_step>

# Now print the final answer
p r i n t ( num_un ique_produc t s )

<end_of_code>
<output>15<end_of_output>
<answer>From the result, we can see that there are 15 unique products.
<end_of_answer>

26


	Introduction
	Related Works
	Methodology
	Design Choices
	Step-by-Step Verified Reasoning Trajectory
	Process Preference Model
	Self-Evolved Deep Thinking
	Training with Step-by-Step Verified Reasoning Trajectory
	Recipe for Self-Evolution


	Evaluation
	Setup
	Main Results
	Ablation Study and Analysis

	Findings and Discussions
	Conclusion
	Appendix
	Additional Experiments and Details
	Examples of Reasoning Trajectories
	Prompt Examples


